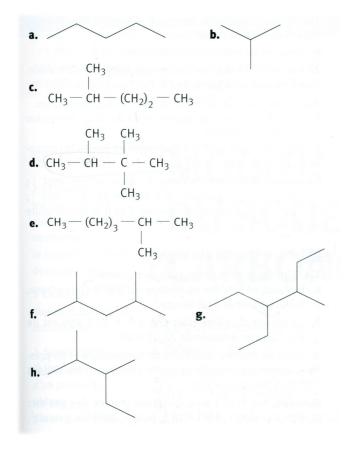

PHYSIQUE /6

Dans une gare de triage, les wagons, lâchés du haut d'une butte,

amorcent en A (altitude z_A) une descente sur une voie rectiligne, avec une vitesse V_A.

- 1°) Faire le bilan des forces exercées sur le wagon de masse M et les représenter sur le schéma à partir du point G. On négligera les forces de frottement.
- 2°) Appliquer le théorème de l'énergie cinétique pour calculer la valeur de la vitesse V_B ' atteinte par le wagon à son arrivée en B (altitude z_B) ? Expliquer.


- 3°) La vitesse réelle en B vaut $V_B = 3.2$ m.s⁻¹. Comment expliquer cette valeur ?
- 4°) On modélise les frottements par une force unique f opposée au déplacement du wagon.
 - a. Calculer les variations d'énergie cinétique et potentielle du wagon entre A et B.
 - Calculer la variation d'énergie mécanique du wagon entre A et B.
 - c. En déduire le travail de la force de frottements \vec{f}
 - d. Calculer la valeur du travail du poids du wagon sur le trajet AB.

Données : $M = 4,4 \times 10^3 \text{ kg}$; $g = 9,8 \text{ N.kg}^{-1}$; h = 1,5 m; $V_A = 1,8 \text{ m.s}^{-1}$; AB = 450 m.

CHIMIE

Exercice 1 (/4)

Voici quelques formules semi développées et topologiques d'alcanes. Donner leur nom.

Exercice 2 (/8)

La teneur massique maximale légale en soufre dans le fioul est de 0,3%.

Afin de déterminer la teneur en soufre d'un fioul, on en prélève, dans un premier temps, une masse m = 100,0 g que l'on brûle complètement. Les gaz de combustion, uniquement constitués de dioxyde de carbone, de dioxyde de soufre et d'eau, barbotent dans

 V_0 = 500,0 mL d'eau. On admet que <u>tout le dioxyde de soufre formé</u> <u>est dissous dans la solution</u>.

/12

On réalise ensuite un dosage de la solution précédente (S): On prélève V = 10,0 mL de cette solution que l'on dose avec une solution de permanganate de potassium, de concentration C' = 5,00.10-3 mol.L-1.

On admet que seul le dioxyde de soufre est alors dosé. On obtient $V'_{eq} = 12,0 \text{ mL}$.

L'oxydant associé au dioxyde de soufre est l'ion sulfate SO₄²-.

- 1- Quelles sont les étapes de ce dosage ? Faire un schéma légendé du dispositif expérimental. On précisera notamment la solution titrante et la solution titrée.
- 2- Établir les demi équations électroniques ainsi que l'équation de la réaction de dosage. Quel est le rôle joué par le dioxyde de soufre dans cette réaction ?
- 3- Calculer la quantité de dioxyde de soufre présente dans le volume V, puis la concentration C en dioxyde de soufre. Expliquer clairement le raisonnement.
- 4- Quelle est la quantité de dioxyde de soufre n₀ qui s'est dissoute dans V₀ ?
- 5- La quantité de matière de dioxyde de soufre obtenue par combustion est égale à la quantité de matière de soufre contenue dans 100g de combustible. En déduire la masse de soufre correspondante puis le pourcentage massique en soufre du fioul. Est-il conforme à la législation?

Données :

Couple redox : $MnO_{4(aq)}^- / Mn^{2+}$

. (4)								
Elément chimique	H	С	N	0	Na	S	Cl	Mĸ
Masse molaire atomique (g.mol ⁻¹)	1,0	12,0	14,0	16,0	23,0	32,1	35,5	54,9