NOM: Prénom: / 20

2 Février 2009 DS N° 5 1S1

PHYSIQUE / 11

Exercice n°1: /5,5

Les chasseurs alpins forment une unité d'élite de l'armée de terre française créée en 1888, spécialisée dans le combat en montagne. Afin de pouvoir gravir à ski des pentes enneigées de fortes inclinaisons, ils adaptent à la semelle de leurs skis des bandes autocollantes anti-recul en fibre synthétique appelée peaux de phoques.

Lors d'un entrainement un chasseur alpin est debout et immobile sur une pente enneigée dont l'inclinaison fait un angle α =25° par rapport à l'horizontale (annexe 1, au dos).

- 1. Dresser le bilan des actions mécaniques s'exerçant sur le système {chasseur alpin + skis}. On négligera les actions mécaniques liées à l'air. /1,5
- 2. La masse du chasseur alpin et de ses skis vaut m=75kg. En déduire la valeur de la réaction \vec{R} . $(=\vec{R}_N + \vec{R}_T)$ /1
- 3. Calculer les valeurs de la réaction normale \vec{R}_N et de la réaction tangentielle \vec{R}_T en utilisant une méthode analytique.
- **4.** Les peaux de phoque peuvent exercer une force de frottement dont la valeur maximale est 500N. En déduire la pente maximale sur laquelle le chasseur alpin peut rester immobile.

 /1

Exercice n°2: /5,5

Le document de l'annexe 2 (au dos) représente la chronophotographie de la chute d'un boulet en hommage à l'expérience historique de Galilée (1564-1642). Ce boulet de masse m=1,0kg et de volume V=0,16dm³ est lâché sans vitesse initiale du dernier étage de la tour de Pise à une date prise comme origine des temps. L'intervalle de temps noté Δt séparant deux positions consécutives du boulet vaut Δt =0,50s.

- 1. Dans quel référentiel est étudié le boulet ?
- 2. Faire le bilan des actions mécaniques exercées sur le boulet. Les représenter sur le schéma sans souci d'échelle. Les frottements de l'air ne sont pas négligeables. /1,5
- 3. Montrer que l'on peut négliger la poussée d'Archimède par rapport au poids.
- **4.** Déterminer les valeurs vitesse instantanée du boulet aux instants t₄ et t₆.
- **5.** Représenter le vecteur $\Delta \vec{v}_5 = \vec{v}_6 \vec{v}_4$

Quelle conclusion peut –on en tirer quant aux valeurs des deux forces appliquées au boulet ?

Données pour la physique :

 $g = 10N.kg^{-1}$

Masse volumique de l'air : ρ_{air} = 1,3 $kg.m^{-3}$

CHIMIE / 11

Exercice n°3: /11

Le vinaigre blanc permet d'éliminer le calcaire et le tartre d'appareils ménagers tels que les bouilloires, les cafetières ou les lave vaisselle. L'acide éthanoïque contenu dans le vinaigre, de formule CH_3COOH , réagit avec le carbonate de calcium $CaCO_{3(s)}$ qui est un composant du tartre et du calcaire.

On fait réagir une masse m inconnue de carbonate de calcium présent dans la bouilloire avec un volume V égal à 250mL de vinaigre blanc de concentration C=1,3mol/L...

Equation globale de la réaction :

 $2CH_3COOH_{(aq)} + CaCO_{3(s)} \rightarrow Ca_{(aq)}^{2+} + 2CH_3COO_{(aq)}^- + CO_2, H_2O$ On réalise une mesure de conductivité de la solution une fois la transformation terminée : σ =2,85S/m.

A. Equation de la réaction

Le carbonate de calcium est un solide constitué de 2 types d'ions : les ions calcium Ca^{2+} et les ions carbonate CO_3^{2-} .

1. Identifier les 2 couples acide/base mis en jeu. Ecrire alors l'équation de la réaction. On considèrera que l'acide éthanoïque réagit avec les ions carbonate du calcaire.

A leur tour, les ions bicarbonates HCO_3^- formés réagissent avec l'acide éthanoïque.

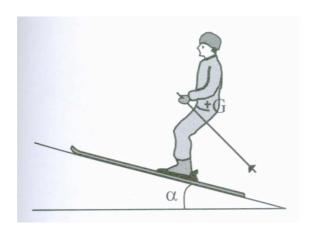
- 2. Identifier les 2 couples acide/base mis en jeu lors de cette seconde réaction. Ecrire alors l'équation de la réaction.
- 3. Montrer que l'on retrouve l'équation globale de la réaction en aditionnant les deux équations précédentes et en considérant que c'est le carbonate de calcium qui réagit et non pas l'ion CO_3^{2-} . /1

B. Etude de la transformation chimique

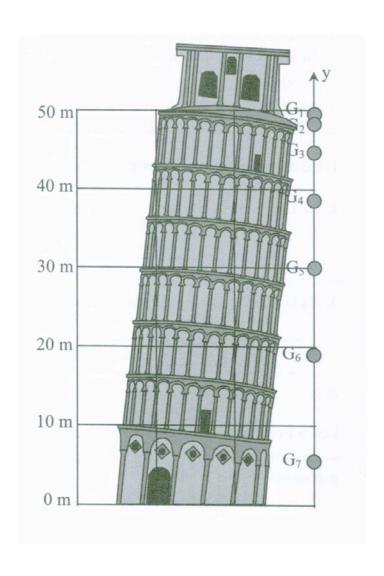
1. Comment peut-on savoir que la transformation chimique est terminée ?

- 2. Etablir le tableau d'avancement associé à l'équation globale./1
- **3.** Quelle est la relation mathématique entre la concentration molaire en ions Ca^{2+} et celle en ions CH_3COO^- /1
- **4.** Quelles sont les espèces chimiques responsables de la conductivité de la solution obtenue après transformation ? /1
- 5. Etablir l'expression littérale de la conductivité en fonction de $\left[\mathit{Ca}^{2+}_{(aq)}\right]$
- **6.** En déduire la concentration molaire en ions calcium de la solution en fin de transformation, puis la quantité de matière notée $n_{Ca^{2+}}$?/1
- 7. Quelle est la quantité de matière de carbonate de calcium $n_{i(CaCO_3)}$ initialement présente dans la bouilloire ?
- **8.** Calculer alors la masse de calcaire $m_{(CaCO_3)}$ dissout par le vinaigre blanc.

Données pour la chimie:


Couples acide/base:

CO₂,H₂O/HCO₃⁻ CH₃COOH/CH₃COO⁻ HCO₃⁻/CO₃²-


élément	Ca	С	0	\mathcal{H}
M (g.mol ⁻¹)	40,1	12,0	16,0	1,00

	Ca ²⁺	CH ₃ COO ⁻
Conductivité molaire ionique $(\times 10^{-4} \text{ S.m}^2.\text{mol}^{-1})$	119	40,9

ANNEXE 1

ANNEXE 2

